Устройство работа и регулировка

Предлагаем ознакомиться с ответами на вопросы по теме: "Устройство работа и регулировка" от профессионалов для людей. Если в статье не найдете ответ на свой вопрос, то можно обратиться к дежурному специалисту.

Устройство и принцип работы регулятора тормозных сил

Регулятор тормозных сил, в народе «колдун», является одним из узлов тормозной системы автомобиля. Его главное предназначение — это противодействие заносу задней оси автомобиля при торможении. В современных автомобилях механический регулятор заменила электронная система EBD. В статье выясним, что такое «колдун», из каких элементов он состоит и как работает. Рассмотрим, как и для чего проводится регулировка этого устройства, а также узнаем последствия эксплуатации автомобиля без него.

Функции и назначение регулятора тормозных сил

«Колдун» применяется для автоматического изменения давления тормозной жидкости в задних тормозных цилиндрах автомобиля в зависимости от нагрузки, действующей на автомобиль в момент торможения. Регулятор давления задних тормозов используется как в гидравлических, так и в пневматических тормозных приводах. Основной целью изменения давления является предотвращение блокировки колес и, как следствие, юза и заноса задней оси.

В некоторых автомобилях для сохранения их управляемости и устойчивости дополнительно к заднему приводу устанавливают регулятор и в приводе передних колес.

Также регулятор используется в целях повышения эффективности торможения порожней машины. Сила сцепления с дорожной поверхностью автомобиля с грузом и без груза будет разной, поэтому необходимо регулировать тормозные силы колес разных осей. В случае с груженой и порожней легковой машиной применяются статические регуляторы. А в грузовых автомобилях используется автоматический регулятор тормозных сил.

В спортивных автомобилях используется еще одна разновидность «колдуна» – винтовой регулятор. Он устанавливается в салоне машины и регулирует баланс тормозов непосредственно во время самой гонки. Настройка зависит от погодных условий, состояния дорожного покрытия, состояния шин и т.д.

Устройство регулятора

Следует сказать, что «колдун» не устанавливается на автомобили, оснащенные системой ABS. Он предшествует этой системе и также позволяет в некоторой степени предотвратить блокировку задних колес при торможении.

Что касается расположения регулятора, то в легковых автомобилях он находится в задней части кузова, в левой или правой стороне днища. Устройство соединено с балкой заднего моста при помощи тяги и торсионного рычага. Последний воздействует на поршень регулятора. Вход регулятора соединен с главным тормозным цилиндром, а выход – с задними рабочими.

Конструктивно в легковых автомобилях «колдун» состоит из следующих элементов:

Корпус разделен на две полости. Первая соединена с ГТЦ, вторая – с задними тормозами. При экстренном торможении и наклоне передней части автомобиля посредством поршней и клапанов перекрывается доступ тормозной жидкости к задним рабочим тормозным цилиндрам.

Таким образом регулятор автоматически контролирует и распределяет тормозное усилие на колесах заднего моста. Это зависит от изменения осевой нагрузки. Также автоматический «колдун» способствует ускорению разблокировки колес.

Принцип работы регулятора

В результате резкого нажатия водителя на педаль тормоза, автомобиль «клюет» и задняя часть кузова приподнимается . При этом передняя часть, наоборот, опускается. Именно в этот момент начинается работа регулятора тормозного усилия.

Если задние колеса начнут торможение одновременно с передними появляется высокая вероятность заноса автомобиля. Если же колеса задней оси будут снижать скорость позже передней, то риск заноса будет минимальным.

Таким образом, когда происходит торможение автомобиля, растет расстояние между днищем и задней балкой. За счет рычага отпускается поршень регулятора, который перекрывает магистраль с жидкостью, идущую к задним колесам. В результате колеса не блокируются, а продолжают вращаться.

Проверка и регулировка «колдуна»

Если торможение автомобиля недостаточно эффективное, машину уводит в сторону, происходят частые срывы в занос — то это говорит о необходимости проверки и регулировки «колдуна». Для проверки необходимо загнать автомобиль на эстакаду или смотровую яму. В таком случае дефекты можно обнаружить визуально. Зачастую обнаруживаются дефекты, при которых отремонтировать регулятор не представляется возможным. Приходится его менять.

Что касается регулировки, то лучше ее проводить, также установив автомобиль на эстакаду. Настройка регулятора зависит от положения кузова. А проводить ее необходимо как в процессе каждого ТО, так и при замене деталей подвески. Регулировка нужна и после ремонтных работ на задней балке или при ее замене.

Регулировку «колдуна» также обязательно проводить в том случае, если при резком торможении блокировка задних колес происходит раньше блокировки передних колес. Это может привести к заносу автомобиля.

А так ли нужен «колдун»?

Если демонтировать регулятор из тормозной системы, может возникнуть достаточно неприятная ситуация:

  1. Синхронное торможение всеми четырьмя колесами.
  2. Последовательная блокировка колес: сначала задних, затем передних.
  3. Занос автомобиля.
  4. Риск дорожно-транспортного происшествия.

Выводы очевидны: регулятор тормозных усилий не рекомендуется исключать из тормозной системы.

Источник: http://techautoport.ru/hodovaya-chast/tormoznaya-sistema/regulyator-tormoznyh-sil.html

Устройство, принцип работы и регулировка клапанного механизма двигателя

Клапанный механизм является непосредственно исполнительным устройством ГРМ, который осуществляет своевременную подачу топливовоздушной смеси в цилиндры двигателя и дальнейший выпуск отработавших газов. Ключевыми элементами системы являются клапаны, которые также обеспечивают герметичность камеры сгорания. Они испытывают большие нагрузки, поэтому к их работе предъявляются особые требования.

Устройство клапанного механизма

Для работы обычного двигателя необходимо минимум два клапана на каждый цилиндр. Один впускной и один выпускной. Сам клапан состоит из стержня и тарелки (головка). Место соприкосновения тарелки с ГБЦ называю седлом. Впускные клапаны имеют больший диаметр тарелки, чем выпускные. Это обеспечивает лучшее наполнение камеры сгорания топливовоздушной смесью.

Устройство клапанного механизма

Весь клапанный механизм состоит из следующих основных элементов:

  • впускной и выпускной клапаны;
  • направляющие втулки (обеспечивают точное направление движения клапанов);
  • пружина (возвращает клапан в исходное положение);
  • седло клапана (место соприкосновения тарелки с корпусом);
  • сухари (два сухаря обеспечивают опорную поверхность для пружины и фиксируют всю конструкцию);
  • маслосъемные колпачки или маслоотражательные кольца (не дает маслу попасть в цилиндр);
  • толкатель (передает нажимное усилие от кулачка распредвала).
Читайте так же:  Долг умершего по расписке

Кулачки на распределительном вале нажимают на клапаны. Их возврат в исходное положение обеспечивается за счет пружины. Пружина крепится на стержне с помощью сухарей и тарелки пружины. Для гашения резонансных колебаний на стержне могут устанавливаться не одна, а две пружины с разносторонней навивкой.

Направляющие втулки клапанов

Направляющая втулка представляет собой деталь цилиндрической формы. Она снижает трение и обеспечивает ровный и правильный ход стержня. В работе эти детали также подвергаются нагрузкам и воздействию температуры. Поэтому для ее изготовления применяются износостойкие и жаростойкие сплавы. Втулки выпускного и впускного клапанов несколько отличаются друг от друга в связи с разницей в нагрузках.

Особенности работы

Клапаны постоянно подвержены воздействиям высокой температуры и давления. Это требует особого внимания к конструкции и материалам данных деталей. Особенно это касается выпускной группы, так как через них выходят горячие газы. Тарелка выпускного клапана в бензиновых двигателях может разогреваться до 800˚С — 900 ˚С, а в дизельных 500˚С — 700˚С. Нагрузка на тарелку впускного в несколько раз ниже, но и она достигает 300˚С, что также немало.

Именно поэтому в их производстве применяются жаропрочные сплавы металлов, содержащие легирующие присадки. Также выпускные клапаны часто имеют полый стержень с натриевым наполнителем. Это делается для лучшей терморегуляции и охлаждения тарелки. Натрий внутри стержня плавится, течет и забирает часть тепла с тарелки и переносит его на стержень. Так можно избежать перегрева детали.

Клапанный механизм двигателя

На седле в процессе работы может образоваться нагар. Чтобы избежать этого, применяют конструкции, которые вращают клапан. Седло представляет собой кольцо из высокопрочных стальных сплавов, которое напрессовывается непосредственно на головку цилиндров для более плотного контакта.

Также для правильной работы механизма должен соблюдаться регламентированный тепловой зазор. От высоких температур детали расширяются, что может привести к неправильной работе клапана. Зазор выставляется между кулачками распредвала и толкателями путем подбора специальных металлических шайб определенной толщины или самих толкателей (стаканов). Если в двигателе применяются гидрокомпенсаторы, то зазор регулируется автоматически.

Слишком большой тепловой зазор, будет препятствовать полному открытию клапана, а следовательно, цилиндры будут менее эффективно наполняться свежим зарядом. Маленький зазор (или его отсутствие) не позволит клапанам закрыться до конца, что приведет к их прогару и снижению компрессии в двигателе.

Количество клапанов

В классическом варианте четырехтактному двигателю для работы достаточно иметь по два клапана на каждый цилиндр. Но к современным моторам предъявляются все большие требования по мощности, расходу топлива и экологичности, поэтому для них этого уже становится недостаточно. Поскольку чем больше клапанов, тем более эффективно происходит наполнение цилиндра свежим зарядом. В разное время на двигателях пробовались следующие схемы:

  • трехклапанные (впуск — 2, выпуск — 1);
  • четырехклапанные (впуск — 2, выпуск — 2);
  • пятиклапанные (впуск — 3, выпуск — 2).

Лучшее наполнение цилиндров и их очистка обеспечиваются при использовании большего числа клапанов на один цилиндр. Но при этом усложняется конструкция двигателя.

На сегодняшний день наиболее популярными являются моторы с 4 клапанами на цилиндр. Первые такие двигатели появились еще в 1912 году на автомобиле Peugeot Gran Prix. Тогда широкого применения данное решение не получило, но начиная с 1970 года начали активно выпускаться серийные автомобили с таким количеством клапанов.

Устройство привода

За правильную и своевременную работу клапанного механизма отвечает распределительный вал и привод ГРМ. Конструкция и количество распредвалов для каждого типа двигателя выбирается индивидуально. Деталь представляет собой вал, на котором выполнены кулачки определенной формы. Проворачиваясь, они оказывают давление на толкатели, гидрокомпенсаторы или коромысла и открывают клапана. Тип схемы зависит от конкретного двигателя.

Газораспределительный механизм

Распредвал находится непосредственно в головке блока цилиндров. Привод к нему идет от коленчатого вала. Это может быть цепная, ременная или зубчатая передача. Наиболее надежной является цепная, но она требует дополнительных конструктивных решений. Например, успокоитель для гашения вибрации цепи и натяжитель. Скорость вращения распределительного вала в два раза ниже, чем скорость вращения коленчатого вала. Так обеспечивается согласование их работы.

От количества клапанов зависит количество распределительных валов. Существует две основных схемы:

При наличии только двух клапанов достаточно одного распредвала. Вращаясь, он обеспечивает попеременное открытие впускного и выпускного клапанов. В наиболее распространенных четырехклапанных двигателях устанавливаются два распредвала. Один обеспечивает работу впускных, а другой выпускных клапанов. В двигателях с V-образных расположением цилиндров устанавливается четыре распредвала. По два на каждую сторону.

Кулачки распредвала не толкают стержень клапана напрямую. Существует несколько типов «посредников»:

  • роликовые рычаги (коромысло);
  • механические толкатели (стаканы);
  • гидравлические толкатели.

Роликовые рычаги имеют более предпочтительную конструкцию. На гидротолкатель давят так называемые коромысла, которые качаются на вставных осях. Чтобы снизить трение на рычаге предусмотрен ролик, который контактирует непосредственно с кулачком.

В другой схеме используются гидравлические толкатели (компенсаторы зазора), которые расположены непосредственно на стержне. Гидрокомпенсаторы автоматически регулируют тепловой зазор и обеспечивают мягкую и менее шумную работу механизма. Это небольшая деталь состоит из цилиндра с поршнем и пружиной, каналов для масла и обратного клапана. Для работы гидротолкателя используется масло, которое подается из системы смазки двигателя. Более подробно про гидрокомпенсаторы можно прочитать в отдельной статье на нашем сайте.

Снятие стакана клапана магнитом

Механические толкатели (стаканы) представляют собой втулку, закрытую с одной стороны. Они устанавливаются в корпус ГБЦ и непосредственно передают усилие на стержень клапана. Основные их недостатки заключаются в необходимости периодической регулировки зазоров и стуке при работе на непрогретом двигателе.

Стук при работе

Основной неисправностью клапанов (не считая прогара) считается появляющийся стук на холодном или горячем двигателе. Стук на холодном двигателе исчезает после набора температуры. Когда они разогреваются и расширяются, тепловой зазор закрывается. Также причиной может стать вязкость масла, которое не поступает в нужном объеме в гидрокомпенсаторы. Загрязнение масляных каналов компенсатора также может вызывать характерный стук.

Читайте так же:  Гта как устроиться на работу полицию

На горячем двигателе клапана могут стучать из-за низкого давления масла в системе смазки, загрязнения масляного фильтра или неправильного теплового зазора. Также следует учитывать естественный износ деталей. Неисправности могут быть в самом клапанном механизме (износ пружины, направляющей втулки, гидротолкателей и т.д.).

Регулировка зазора

Регулировку проводят только на холодном двигателе. Текущий тепловой зазор определяется специальными металлическими плоскими щупами разной толщины. Для изменения зазора на коромыслах имеется специальный регулировочный винт, который проворачивается. В системах с толкателями или регулировочными шайбами регулировка происходит путем подбора деталей нужной толщины.

Регулировка клапанов для механизма с коромыслами

Рассмотрим пошаговый процесс регулировки клапанов для двигателей с толкателями (стаканами) или шайбами:

  1. Снимите клапанную крышку двигателя.
  2. Проверните коленчатый вал так, чтобы поршень 1-го цилиндра находился в ВМТ. Если это сложно сделать по меткам, то можно выкрутить свечу и вставить в колодец отвертку. Ее максимальное перемещение вверх покажет мертвую точку.
  3. С помощью набора плоских щупов измерьте зазор в приводе клапанов под теми кулачками, которые не нажимают на толкатели. Щуп должен иметь плотный, но не слишком свободный ход. Запишите номер клапана и величину зазора.
  4. Проверните коленчатый вал на один оборот (360°) так, чтобы поршень 4-го цилиндра находился в ВМТ. Измерьте зазор под оставшимися клапанами. Запишите данные.
  5. Проверьте, в каких клапанах зазор не попадает в допуск. Если такие имеются, то подберите толкатели нужной толщины, снимите распредвалы и установите новые стаканы. На этом процедура закончена.

Проверку зазора рекомендуется проводить каждые 50-80 тысяч километров пробега. Данные о стандартных зазорах можно найти в руководстве по ремонту автомобиля.

Величина допускаемого зазора для впускных и выпускных клапанов иногда может отличаться.

Правильно настроенный и отрегулированный газораспределительный механизм обеспечит ровную и плавную работу ДВС. Также это положительно скажется на ресурсе мотора и комфорте водителя.

Источник: http://techautoport.ru/dvigatel/mehanicheskaya-chast/klapannyi-mehanizm.html

Устройство и принцип работы тормозной системы автомобиля

Тормозная система автомобиля (англ. — brake system) относится к системам активной безопасности и предназначена для изменения скорости движения автомобиля вплоть до его полной остановки, в том числе экстренной, а также удержания машины на месте в течение длительного периода времени. Для реализации перечисленных функций применяются следующие виды тормозных систем: рабочая (или основная), запасная, стояночная, вспомогательная и антиблокировочная (система курсовой устойчивости). Совокупность всех тормозных систем автомобиля называется тормозным управлением.

Рабочая (основная) тормозная система

Главное предназначение рабочей тормозной системы заключается в регулировании скорости движения автомобиля вплоть до его полной остановки.

Основная тормозная система состоит из тормозного привода и тормозных механизмов. На легковых автомобилях применяется преимущественно гидравлический привод.

Схема тормозной системы автомобиля

Гидропривод состоит из:

Главный тормозной цилиндр преобразует усилие, сообщаемое водителем педали тормоза, в давление рабочей жидкости в системе и распределяет его по рабочим контурам.

Для увеличения силы, создающей давление в тормозной системе, гидропривод оснащается вакуумным усилителем.

Регулятор давления предназначен для уменьшения давления в приводе тормозных механизмов задних колес, что способствует более эффективному торможению.

Виды контуров тормозной системы

Контуры тормозной системы, представляющие собой систему замкнутых трубопроводов, соединяют между собой главный тормозной цилиндр и тормозные механизмы колес.

Контуры могут дублировать друг друга или осуществлять только свои функции. Наиболее востребована двухконтурная схема тормозного привода, при которой пара контуров работает диагонально.

Запасная тормозная система

Запасная тормозная система служит для экстренного или аварийного торможения при отказе или неисправности основной. Она выполняет те же функции, что и рабочая тормозная система, и может функционировать и как часть рабочей системы, и как самостоятельный узел.

Стояночная тормозная система

Основными функциями и назначением стояночной тормозной системы являются:

  • удержание транспортного средства на месте в течение длительного времени;
  • исключение самопроизвольного движения автомобиля на уклоне;
  • аварийное и экстренное торможение при выходе из строя рабочей тормозной системы.

Устройство тормозной системы автомобиля

Основой тормозной системы являются тормозные механизмы и их приводы.

Тормозной механизм служит для создания тормозного момента, необходимого для торможения и остановки транспортного средства. Механизм устанавливается на ступице колеса, а принцип его работы основан на использовании силы трения. Тормозные механизмы могут быть дисковыми или барабанными.

Конструктивно тормозной механизм состоит из статичной и вращающейся частей. Статичную часть у барабанного механизма представляет тормозной барабан, а вращающуюся – тормозные колодки с накладками. В дисковом механизме вращающаяся часть представлена тормозным диском, неподвижная – суппортом с тормозными колодками.

Управляет тормозными механизмами привод.

Видео (кликните для воспроизведения).

Гидравлический привод не является единственным из применяемых в тормозной системе. Так в системе стояночного тормоза используется механический привод, представляющий собой совокупность тяг, рычагов и тросов. Устройство соединяет тормозные механизмы задних колес с рычагом стояночного тормоза. Также существует электромеханический стояночный тормоз, в котором используется электропривод.

В состав тормозной системы с гидравлическим приводом могут быть включены разнообразные электронные системы: антиблокировочная, система курсовой устойчивости, усилитель экстренного торможения, система помощи при экстренном торможении (Brake Assist System).

Существуют и другие виды тормозного привода: пневматический, электрический и комбинированный. Последний может быть представлен как пневмогидравлический или гидропневматический.

Принцип работы тормозной системы

Работа тормозной системы строится следующим образом:

  1. При нажатии на педаль тормоза водитель создает усилие, которое передается к вакуумному усилителю.
  2. Далее оно увеличивается в вакуумном усилителе и передается в главный тормозной цилиндр.
  3. Поршень ГТЦ нагнетает рабочую жидкость к колесным цилиндрам через трубопроводы, за счет чего растет давление в тормозном приводе, а поршни рабочих цилиндров перемещают тормозные колодки к дискам.
  4. Дальнейшее нажатие на педаль еще больше увеличивает давление жидкости, за счет чего срабатывают тормозные механизмы, приводящие к замедлению вращения колес. Давление рабочей жидкости может приблизиться к 10-15 МПа. Чем оно больше, тем эффективнее происходит торможение.
  5. Опускание педали тормоза приводит к ее возврату в исходное положение под действием возвратной пружины. В нейтральное положение возвращается и поршень ГТЦ. Рабочая жидкость также перемещается в главный тормозной цилиндр. Колодки отпускают диски или барабаны. Давление в системе падает.

Важно! Рабочую жидкость в системе нужно периодически менять. Сколько тормозной жидкости потребуется на одну замену? Не более литра-полутора.

Основные неисправности тормозной системы

В таблице ниже приведены наиболее распространенные неисправности тормозной системы автомобиля и способы их устранения.

Читайте так же:  Внешнее совместительство в трудовой книжке образец
Симптомы Вероятная причина Варианты устранения
Слышен свист или шум при торможении Износ тормозных колодок, их низкое качество или брак; деформация тормозного диска или попадание на него постороннего предмета Замена или очистка колодок и дисков Увеличенный ход педали Утечка рабочей жидкости из колесных цилиндров; попадание воздуха в тормозную систему; износ или повреждение резиновых шлангов и прокладок в ГТЦ Замена неисправных деталей; прокачка тормозной системы Увеличенное усилие на педаль при торможении Отказ вакуумного усилителя; повреждение шлангов Замена усилителя или шланга Заторможенность всех колес Заклинивание поршня в ГТЦ; отсутствие свободного хода педали Замена ГТЦ; выставление правильного свободного хода

Заключение

Тормозная система является основой безопасного движения автомобиля. Поэтому на нее всегда должно быть обращено пристальное внимание. При неисправности рабочей тормозной системы эксплуатация транспортного средства запрещается полностью.

Источник: http://techautoport.ru/hodovaya-chast/tormoznaya-sistema/tormoznaya-sistema-avtomobilya.html

Регулировка и настройка сельскохозяйственных машин и агрегатов

Каждая сельскохозяйственная машина и агрегат в процессе выполнения технологических операций подвергается воздействию большого количества изменяющихся факторов: переменной нагрузки, зависящей от ширины захвата; типа и влажности почвы (растений), твердости и удельного сопротивления почвы; скорости движения; урожайности; нормы высева семян и удобрений; воздействию среды — температуры воздуха, влажности и плотности почвы, наличию абразивных частиц в воздухе.

Под воздействием этих факторов происходит износ трущихся поверхностей: втулок, подшипников, цепей, ремней, регулировочных болтов, пружин; затупление лезвий, в результате чего нарушаются регулировки, снижается качество выполняемых работ, увеличивается расход топлива, повышается тяговое сопротивление (нагрузка).

Поэтому узлы, механизмы или машина в целом могут преждевременно выйти из строя или создастся аварийное состояние.

К ухудшению качества полевых работ может привести не только нарушение регулировки какого-то узла, механизма или машины, но и смещение рабочих органов, изгиб рамы и балок, изменение длины регулировочных тяг, навески и т.д. В этом случае встает вопрос о регулировке узлов, механизмов машины и настройке агрегата в целом на заданные режимы работы.

Регулировка рабочих органов, узлов и механизмов машины — это изменение их параметров расположения в пределах, обусловленных техническими и агротехническими требованиями для создания ими нормальных (безаварийных) условий работы. Этими требованиями обуславливается эксплуатационный допуск каждого регулировочного параметра рабочего органа, узла, механизма машины, орудия или агрегата в целом.

Регулировка рабочих органов, узлов, механизмов машины подразделяется на техническую и технологическую. Техническая регулировка проводится в соответствии с техническими требованиями, технологическая — в соответствии с агротехническими требованиями, предъявляемыми к машине.

Техническая регулировка зависит в основном от конструкции, материала и технического состояния (износа) узла, механизма или машины и может проводиться в любое время года: во время ремонта сельскохозяйственных машин, во время постановки или снятия с хранения, во время подготовки техники к использованию по назначению. Технологическая регулировка зависит от технологии возделывания и уборки сельскохозяйственных культур, типа возделываемых культур и почвенно-климатических условий. Этот тип регулировки проводится непосредственно перед выездом в поле, когда известны культура, тип почвы и агротехнические требования, а также при наличии соответствующих приспособлений и инструмента — непосредственно в поле.

Примеры технических регулировок: для машин, имеющих ходовые или опорные колеса — давление в шинах колес, зазор в подшипниках и втулках; для машин, имеющих клиноременную и цепную передачи — зазор в зацеплении шестерен, натяжение цепей и ремней, установка в одной плоскости вращающихся звездочек, шкивов; для почвообрабатывающих, посевных и уборочных машин — расстановка рабочих органов; жатки и сенокосилки — зазор между прижимными пластинами и сегментами ножа, между сегментами и противорежу- щими пластинами (между сегментами), центрация сегментов ножа и пальцев бруса в крайних положениях; для высевающих аппаратов зерновых сеялок — плотность прилегания клапана к ребру муфты, лице- вание катушки; для свекловичных сеялок — зазор между плоскостью высевающего диска и корпусом высевающего аппарата, между чистиком и роликом отражателя семян; для лущильников, дисковых борон, дисковых сошников зерновых сеялок — зазор между чистиком и дисками; для картофелеуборочных машин — зазор между баллонами и щитками, транспортерами ботвоудалителя УКВ-2 и т.д.

Примеры технологических регулировок: для почвообрабатывающих и посевных, корнеуборочных и картофелеуборочных машин — установка глубины хода рабочих органов; для зерновых сеялок — зазор между клапаном и ребром муфт высевающих аппаратов; для машин по внесению минеральных удобрений и пестицидов — положение рычагов, заслонок; для кормоуборочных машин — высота среза и длина резки при измельчении; для жаток и сенокосилок — высота среза, частота вращения мотовила и его установка по высоте и выносу относительно режущего аппарата; для зерноуборочных комбайнов — зазоры в молотильном барабане, частота вращения молотильного барабана и вентилятора, открытие жалюзей решёт; для ботвоуборочных машин — зазор между ножом и почвой, между ножом и копиром вертикальный и горизонтальный и др.

В современных сельскохозяйственных машинах регулировки проводятся: с помощью регулировочных болтов и винтов; установкой или снятием шайб; перемещением кронштейнов по прорезям (продолговатым отверстиям); открытием и закрытием заслонок, отверстий, сменой насадок, распылителей; поворотом рабочих органов относительно места крепления; удлинением и укорачиванием тяг; поворотом валов, на которых крепятся детали (клапана высевающих аппаратов зерновых сеялок); подъемом или опусканием (штанга опрыскивателей); использованием слесарного инструмента и регулировочной площадки с приспособлениями и трафаретами и др.

Читайте так же:  Выдать работнику при увольнении обязательно

Технологическая настройка — это изменение положения рабочих органов, механизмов и машин, агрегатов в заданных техническими требованиями пределах и обусловленных агротехническими требованиями в целях использования машины по назначению.

Технологическая настройка включает технические и технологические регулировки рабочих органов, узлов, механизмов машины и агрегата в целом и дополнительно регулировку навесной системы или прицепного устройства трактора. Например, настроить на заданную глубину навесную почвообрабатывающую машину. При этом выполняются все технические и технологические регулировки, а также выравнивается машина в горизонтальной плоскости с помощью навески трактора.

Настроить зерновую сеялку на заданную норму высева семян — это значит провести технические и технологические регулировки и дополнительно установить соответствующие шестерни передачи вращения на вал высевающих аппаратов, переместить рычаг установки на норму высева на определенное деление и открыть клапан высевающих аппаратов перемещением рычага в определенное положение.

В настройку комбайнов на заданные режимы работы, т.е. на минимальные потери и травмирование зерна, корнеплодов, клубнеплодов входят в совокупности регулировки всех узлов и механизмов.

Вместе взятые регулировки и настройка, а также оборудование,

приспособления и технологические карты для их проведения составляют основу технологического обслуживания машин и агрегатов.

Источник: http://studref.com/657488/agropromyshlennost/regulirovka_nastroyka_selskohozyaystvennyh_mashin_agregatov

Устройство, работа и регулировка механизмов промышленных машин 22-А и 97-А классов

Промышленные швейные машины имеют повышенные скоро-стные характеристики и несколько иные кинематические связи в сравнении с бытовыми швейными машинами, работающими на небольших скоростях. Ниже рассмотрены эти кинематические связи на примере швейных машин 22-А и 97-А классов, имеющих соответствующую частоту вращения вала 3500 и 5000 мин-1.

Швейная машина 22-А класса ПМЗ

Механизм иглы (рис. 12). Этот механизм является типично кривошипно-шатунным, преобразующим вращательное движение главного вала 6 через кривошип 7 и шатун 8 в возвратно-поступательное движение игловодителя 4 с иглой 1, закрепленной в иглодержателе 2. Игловодитель может быть перемещен по высоте с помощью регулировочного винта Р поводка (шпильки).

Механизм нитепритягивателя (рис. 13). Это механизм шарнирно-стержневого типа. Представляет собой рычаг 3, надетый на внутреннее плечо пальца кривошипа (см. рис. 12, 7), шарнир-но соединенного с соединительным звеном которое шарнирно соединено с телом машины при помощи шпильки 2. Внешнее плечо рычага снабжено ушком для заправки нитки. При вращении кривошипа главного вала ушко нитепритягивателя описывает сложную кривую, медленно опускаясь для подачи нитки и быстро поднимаясь для затягинания стежка. Регулировка в механизме отсутствует.

Механизм челнока (рис. 14). Механизм челнока вращающийся. Свои движения челнок получает от главного вала через по* средство двух пар конических шестерен 2 с общим передаточным отношением 1 = 1:2. Челнок крепится на челночном валу 4 винтами, поэтому при необходимости может быть повернут или перемещен (при наладке машины).

Механизм двигателя ткани (рис. 15) состоит из двух узлов, один из которых сообщает рейке движение по вертикали, а второй — по горизонтали.

Узел вертикальных перемещений рейки имеет следующее устройство. На главном валу крепится сдвоенный эксцентрик . При вращении главного вала эксцентрик сообщает шатуну 3 движения по вертикали. При этом шатун, шарнирно соединенный задней головкой с задним коромыслом 8 поднимающего вала 9, колеблет этот вал в центровых винтах. Закрепленное на переднем конце вала коромысло 10 через посредство ролика поднимает и опускает рычаг двигателя ткани 11 с рейкой и при необходимости может быть повернуто на валу (регулировка Р).

Общая компоновка механизмов приведена на рисунке 16. На кинематической схеме отмечены основные места регулировки механизмов и стрелками показаны места смазки.

Швейная машина 97-А класса

Машина 97-А класса относится к современному быстроходному оборудованию и имеет более сложные кинематические связи.

Механизм иглы (рис. 17). В принципе он не отличается от аналогичного механизма 22-А класса, однако конструктивно выполнен более совершенно: укороченный, облегченный, тонкий игловодитель 8 в своем движении направляется не только втулками 4, но и направляющей для вкладыша 7, надетого на палец шпильки 11. Эта направляющая снабжена автоматической смазкой. Верхняя головка шатуна 9 смонтирована на игольчатом подшипнике.

Механизм нитепритягивателя (рис. 18). Механизм одинарный вращающийся, состоит из пальца кривошипа 1, диска рычага нитепритягивателя 3, жестко закрепленного винтами 2 на пальце, и самого нитепритягивателя — детали своеобразной формы, которая привинчивается к рычагу. Регулировка механизма показана на рисунке стрелками (Р). Механизм не требует смазки.

Механизм челнока (рис. 19). В отличие от механизма челнока машины 22-А класса механизм челнока 97-А класса выполнен с применением автоматической смазки. От главного вала вращение челночному валу 7 передается системой зубчатых барабанов 1 и шестерен 4 и 5 через передаточный вал 3, опорами которого служат шариковый подшипник и втулка, вмонтированная в отверстия приливов платформы.

Передаточное отношение от главного вала к передаточному 1=1:1, а к челночному валу 1:2. Шестерни расположены в картере с маслом.

Механизм имеет устройство для автоматической подачи масла: из картера в челнок 8 через осевое отверстие в челночном валу.

Механизм двигателя ткани (рис. 20). Двигатель ткани 9 закреплен на рычаге 8, шарнирно соединенном с коромыслом 7 вала продвижения 6. Вал продвижения-качательные движения получает от передаточного вала через эксцентрик. Эксцентрик охватывается головкой шатуна 2, соединенного с помощью соединительного звена 3 с задним коромыслом вала продвижения. Устройство 4-10-11-12-13-14-15-16-17 позволяет регулировать величину стежка и перемещение материала с прямого на обратное.

Вертикальные перемещения двигатель ткани получает от вала подъема 21, который также получает качательные движения от эксцентрика 18, закрепленного на передаточном валу. Эксцентрик охватывается головкой шатуна 19, другая головка которого шарнирно соединена с коромыслом 20 вала подъема.
Механизм характерен использованием игольчатых подшипников, короткими шарнирными связями.

Для регулировки величины стежка надо левой рукой нажать до стопора кнопку платформы, застопорив кольцо, а правой рукой поворачивать за маховик главный вал машины. На схеме отмечены места регулировок (Р). Пунктирными стрелками показаны места смазок.

Читайте так же:  Справка подтверждающая отсутствие задолженностей по налогам

Электропривод к швейной промышленной машине

В отличие от бытовых швейных машин, имеющих ручной или ножной привод (некоторые бытовые машины снабжаются электроприводами), каждая промышленная швейная машина оборудована индивидуальным фрикционным электроприводом, который служит для включения и выключения машины и регулировки ее скорости.

В универсальных швейных машинах скорость шитья изменяется плавно. Для этого используют передачу движения трением: колеса сближают, чтобы они тесно соприкасались друг с другом. При ослаблении силы, прижимающей одно колесо к другому, одно колесо начинает проскальзывать, скорость уменьшается! В этом заключается принцип работы фрикционного электропривода, он состоит из электродвигателя, фрикциона, системы передачи, аппаратуры управления и электрической защиты.

Кинематика индивидуального фрикционного привода показана на рисунке 21. При нажатии на ножную педаль 12 с помощью цепи поворачивается рычаг 10. При этом втулка 5 благодаря своей прорези 3 движется поступательно по направлению к электродвигателю 9 относительно неподвижного пальца 4. Диск 7, закрепленный на валу 2, входит в сцепление с диском 8Г закрепленным на валу электродвигателя, и начинает вращаться, передавая с помощью ремня через шкив вращение главному валу машины. Чем меньше давление ноги работающего на педаль, тем больше проскальзывание между дисками 7 и 8, тем меньше скорость машины. При опускании педали пружина 11 возвращает рычаг 10 и втулку 5 в начальное положение, диски 7 и 8 расходятся и прерывают соединение с валом электродвигателя. Тормоз 6 останавливает диск 7.

В специальных швейных машинах и машинах-полуавтоматах, имеющих автоматический останов, применяется бесфрик» ционный электропривод.

Источник: http://www.macteritsa.ru/kroyka-i-shityo/ustroystvo-rabota-i-regulirovka-mehanizmov-promyshlennyh-mashin-22-a-i-97-a-klassov.html

Описание устройства, процесса работы и регулировок проектируемой машины

Устройство

Модернизированная сеялка для посева зерновых культур бороздково-ленточным способом выполнена на базе серийной сеялки СЗ — 2,8. Модернизация заключается в изменении конструкции сошниковой секции и замене гладкого катка на струнный. Остальные элементы остаются без изменений.

Предполагаемая модернизируемая машина предназначена для разноуровневого внесения семян и удобрений, причем удобрения вносятся на 5 — 6 см ниже уровня семян. Технологическая схема сеялки представлена на рисунке 27.

Рисунок 28 — Технологическая схема модернизированной сеялки.

1 — прицеп; 2 — гидроцилиндр; 3 — ящик зернотуковый; 4 — редуктор; 5 — доска подножная; 6 — рама; 7 — каток; 8 — колесо опорное; 9 — сошник; 10 — колесо самоустанавливающееся.

Технологическая схема сошника представлена на рисунке 28.

Рисунок 29 — Технологическая схема сошника.

1 — стойка; 2 — колено; 3 — раструб; 4 — долото; 5 — лапа культиваторная;

Сошники крепятся на трех поперечных брусьях по четыре сошника на каждом с помощью болтов, гаек, шайб и служат для подрезания стерни, сорняков, рыхления почвы на глубину 5…10 см и равномерного высева семян и удобрений. Сошник состоит из стойки 1, лапы 5, колена 2, раструба 3, долота 4. Лапа крепится к стойке болтами, гайками, шайбами. Колено крепится к стойке теми же болтами, что и лапа. Долото и раструб крепится к колену тоже болтами, шайбами и гайками.

Каток в сборе (рисунок 29) служит для выравнивания и уплотнения почвы засеянной зоны и передачи вращения на валы высевающих и туковых аппаратов сеялки. Состоит из рамы катка 1, со стойками для присоединения к сеялке, 2 — струны непосредственного рабочего органа, 3 — блока звездочек, 4 — вала на подшипниковых опорах.

Рисунок 30 — Каток.

1 — рама; 2 — струна; 3 — блок звездочек; 4 — вал.

Рабочий процесс

Почвообрабатывающий посевной агрегат работает следующим образом: перед началом работы производят заглубление в почву на глубину высева (50 — 60 мм) сошников 9, закрепленных фронтально на раме 6, опирающейся опорные колеса 8, для обеспечения работы сеялки необходимо соединить ее с прицепной серьгой и гидросистемой трактора. Затем поставить рычаг гидрораспределителя трактора в плавающее положение. При этом шток гидроцилиндра 2 втянется, а рабочие органы сеялки заглубятся (заглубление должно происходить при движении сеялки). Колеса задние поднимутся и от катка будет передаваться вращение на валы высевающих аппаратов. При движении почвообрабатывающее — посевного агрегата сошники 9 на установленной глубине подрезают почву и сорняки, разрыхляют, частично сдвигают верхний слой почвы и образуют под каждой стрельчатой лапой горизонтальную борозду — ленту шириной (например, 200 мм) с уплотненным дном, на которую через колено 2 (рис.28) поступают из зернотукового бункера 3 , с помощью распределителя установленного в колене по краям борозды формирует 2 ленты из семян. Долото 4 , закрепленное ниже на 50 — 60 мм уровня стрельчатых лап, проходит по центру борозды и формирует еще одну борозду шириной 50 мм , в которую подаются удобрения при помощи раструба 3.

Установленные вслед, посредством тяги 5 (рис. 29) , шарнирно соединенной с рамой сеялки, прикатывающий каток 7 (рис.27) уплотняют почву засеянных лент и формирует поверхностный мульчирующий влагосберегающий слой непосредственно над высеянными семенами, обуславливая тем самым более тесный контакт их с почвой, предотвращая образования корки и уменьшая испарения влаги. Применение шарнирного соединения тяги с рамой 1 позволяет прикатывающим каткам приспосабливаться к рельефу поля. Закрепленные за катками загортачи разравнивают вуаль почвы засеянной площади.

Регулировки

Порядок и способы регулирования нормы и равномерность высева, а так же положения клапана высевающего аппарата у модернизированной сеялки остаются неизменными от базовой модели. Общая и индивидуальная регулировка глубины посева выполняются по прежней методике. Глубина заделки удобрений регулируется с помощью относительного перемещения долота и стойки, что достигается при помощи прорезей расположенных на кронштейне долота 4 (рис.29). Общая глубина заделки семян и удобрений производится с помощью ограничителя установленного на рабочей чести штока гидроцилиндра 2 (рис. 28), путем относительного перемещения ограничителя вдоль оси штока гидроцилиндра. Правильно настроенная и отрегулированная сеялка работает в допустимых значениях согласно агротехнических требований.

Видео (кликните для воспроизведения).

Источник: http://studbooks.net/1291280/agropromyshlennost/opisanie_ustroystva_protsessa_raboty_regulirovok_proektiruemoy_mashiny

Устройство работа и регулировка
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here